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Useful design rules and simple scaling models have been developed for solar sails. Chief 
among the conclusions are 
1. Sail distortions contribute to the thrust and moments primarily though the mean squared 
value of their derivatives (slopes), and the sail behaves like a flat sheet if the value is small. The 
RMS slope is therefore an important figure of merit, and sail distortion effects on the spacecraft 
can generally be disregarded if the RMS slope is less than about 10% or so. 
2. The characteristic slope of the sail distortion varies inversely with the tension in the sail, and 
it is the tension that produces the principle loading on the support booms. The tension is not 
arbitrary, but rather is the value needed to maintain the allowable RMS slope. That 
corresponds to a halyard force about equal to three times the normal force on the supported sail 
area. 
3. Both the AEC/SRS and L’Garde concepts appear to be structurally capable of supporting 
sail sizes up to a kilometer or  more with 1AU solar flux, but select transverse dimensions must be 
changed to do so. Operational issues such as fabrication, handling, storage and deployment will 
be the limiting factors. 

L Sail Performance 
Wrinkles and billow in the sail can reduce the thrust and even 

produce moments. It should be immediately obvious, however, 
that such sail distortion is a matter of degree and that a sail should 
ultimately behave as a flat sheet as the surface slopes become 
“small”. In fact, analytical results shown in Fig. 1 were presented 
three years ago at the SSDM Conference in Denver (Ref. l), 
predicting that wrinkle aspect ratios of as much as several percent 
should produce minimal effects under most conditions of interest. 
The findings appear to have gone unappreciated, however, and 
considerable effort has been spent on modeling and testing of 
what could be regarded as a “non-problem” since tension can be 
used quite effectively to flatten the sail (Section 11.) It will be 
shown here, using a perturbation approach that has proved quite 
useful with optics, that their results can be generalized in terms of 
the FWS slope as a single “figure of merit” for sail distortion 
characterization and control. 

First, considering for simplicity a sail with ideal specular 
reflectivity, McInnis (Ref. 2, Eqn. 2.20) has shown that the force 
per unit sail area is given by 

where (5 = 9.12 Nkm’ = 2.05 lb/km2 @ 1AU is twice the solar 
pressure p, is its unit flux vector, and n’ is the unit normal to 
the surface. Force components are often chosen relative to the 
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Figure 1: Tangential and radial thrust 

direction of flight or to the incident light (as was done for Fig. I), but it is more convenient here to reference to a 
mean flat surface. We shall accordingly choose coordinates such that the mean sail lies in the plane z = 0, let the 
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incident flux vector lie in the plane y = 0 such that it is given by 0 = k' cos 8 - ? sin 8 as in Fig. 2, and let the sail 
surface be given by W = z - w(x,y) = 0. Thus, 

V W  k - i w '  -?wl x J  Y - n=-= 
lvwl (1 + w': +w*; y i 2  

so that the total force on the sail is 
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which, for small deflections w, can be expanded in series form to give 
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i plane while the other is the side thrust produced by distortions with 
i oblique solar incidence. The distortions contribute to the force primarily 

though the mean squared values of their derivatives (slopes), and the sail 
~ behaves like a flat sheet if the values are small. This has been verified 

by a large number of numerical simulations by John Rakoczy of MSFC, 
and his results, displayed in Fig. 3 for ideal sails at normal incidence, 
actually correlate with RMS slope over a much wider range than might 
be expected. The effects of distortions on the normal and side thrusts are 
shown for various incidence angles 8 in Fig. 4 in terms individually of 
the X (solid curves -- and in the plane of the incident light) and Y 
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Figure 2: Thrust diagram 
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Integrals of the slopes alone tend to vanish for both local distortions (wrinkles and creases) and for symmetric global 
ones (large-scale billow, etc) symmetry in the force equation, so, defining mean values by < X > A = x dA , we 

obtain 
3 5 
2 3 

F = cr A k' [cos2 8 --{<w'; > (1 --sin2 8)+ <w': >cos2 e } ]  - cr A < iw':+Jw', wlY >sin 28 +... 
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The analysis so far has been restricted to ideal sails with perfect specular reflection, and we now turn attention to 
Returning to McInnis (Ref. 2, Sec. 2.6.1), the elemental optical force is the sum of vector nonideal ones. 

components due to: 
Absorption ja = p (0. i ) ~  , Specular reflection: jrs = pv p (0. ii)j , 
Diffuse reflection: j ,  =B,p(l-v)p (r7.ii)i I 

(1-p) p (0.ii)ii and Thermal emission: = a'(T4 -T:) &/ B/ - & b  Bb (E ,B,  -cbBb)ii = 
&/ + & b  

where S = unit reflection vector for which (0 - s') x ii = 0 and (0 + 3) .  ii = o , 
p = total reflection efficiency, 
Bf, Bb = front and back surface non-Lambertian reflection coefficients, 
E+ , Q, = front and back surface emissivities. 

v = specular reflection efficiency, 

Neglecting the small effect of sail distortion on (0 .  i ), the thermal emission equations predict the equilibrium sail 
temperature to be given by T4 = E U c o s $ + T , '  

d & / + E b  

McInnis's diffbse reflection model directs the thrust component normal to the surface, but this doesn't appear to be 
an important restriction because some diffuse contribution can be assigned to the specular one. 

Again referencing force components to a mean flat surface as in Fig. 2, the reflected unit vector is given by 
cos$+ wIX sin B - - - ,? = ~ - 2 ( ~ . n ' ) i = ~ c o s ~ - ~ s i n ~  - 2  (k - i w o x  -jwIy ) 5 

1 + W'i +w'; 
so the total force per unit area on the sail is then 

- -  ... 
cos f9 + wIX sin 8 cos0 + wtX sin 8 [(I - a)(i cose- isin e) + (2a 

where we have introduced two new material property parameters, a = pv being the fraction of the incident flux that 

is specular reflected in the direction s , and 

being the fraction of the incident flux that contributes to thrust from diffise reflection and thermal re-emission. 
These two parameters totally account for the effects of absorption, specular and difhse reflection, and thermal 
emission on thrust and moments. McInnis gives 

for the values of the parameters based upon JPL calculations for a comet Halley rendezvous, so a = 0.827 and = 
0.0417 - 0.0526 = - 0.0109 for that case, and the resulting 1AU equilibrium temperature for normal incidence and 
zero sink temperature is 264 k. The net contribution of difhse reflection and re-emission of thermal radiation is 
very small for this representative case, and it appears likely that it will be the case in general as long as p and v are 
close to unity. 

- 
f l =  B f p ( l - v ) + ( l - p ) ( E f B f  -&bBb)'(&f + & b )  

p = 0.88 V = 0.94 Bf= 0.79 Bb = 0.55 Ef = 0.05 Eb = 0.55 

The force on a perfectly flat sail (w' = 0) is given by 
$ = p c o s ~  [i{(l+ CZ))COSB+ p> - ?(I- a ) s i n ~ ] .  

The thrust on a sail varies primarily as the square of the cosine of the incidence angle, but an in-plane component 
fx = - p(1- a)sin e cose arises when there is absorbed flux, and McInnis has pointed out that it directs the 

resultant thrust at an angle 

to the incident vector. The result is that pitch is less effective at directing thrust with a non-ideal sail, and there is, in 
fact, a maximum steering angle that can be obtained. The maximum thrust angle is y.~ = 55.5' at a pitch angle 8 = 
72.6' for the given parameters, but the thrust angle relative to the sail normal itself at that condition is -17.1', and it's 
magnitude continues to rise with pitch angle. 

The force equation for the nonideal sail can be expanded as was done in a Taylor series for small values of the 
slopes w', this time producing the far more complicated expression 

1 (1 + a) cos e + p 
= 6 +tan-'(-) fx = 0 -tan-'( (1 - @sin 0 

f* 
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I - a  
- ( 1 + 5 a c o s 2  e+ pase)wl; +. . .I - I [l-asin2~+{--sin20+ 2acos2 e+ pcose)wg, 

+ {-sin28+ Qsin@}w’: --w’t sin28+. ..] - J [(2acos2 8+pcos)w’,+(2asin20 + flsinB)w’, wlY +. ..I. 
The results remain complicated even after the area integration, but the essential behavior can be explored rather 
easily by working in steps, noting that the mean (Le., integrated) values of the slopes w ’ ~  and w ? ~  vanish by 
definition. Then, first letting the nonideal surface parameters a and fi be constant, the total thrust is just 

2 2 2 
9a-1 I - a  
4 4 

- 1 - a  F I PA = jj? I PA d~ = i [(I + a) cos2 e + pcos e] - i -sin 2 8  

- [ k ( ~ c o s ’ ~ - ~ a s i n ’ ~ + ~ c o s ~ ) +  - i(-sin2~+/3sin~)]< 9 a - 1  w ’ i  > 

1 - a  - [ i ( y c o s ’  B + p c o s ~ )  - i-sin 201 < w’t > - j (2asin 20 + psin 8) < wtx wlY > +. . . 
2 

which reduces to the previous result for an ideal sail when a = 1 and = 0 and which reduces to the flat sail result 
when the mean square slopes <w’x3 and <w?y2> are small (e.g., less than about 0.01.) However, if they are small 
and if the surface parameters a and p are now allowed to vary, then linear slope terms of the form <aw’> and 
<fiw’> will also be small if the property variations ~ C X  and 6 s  are less than about 0.1. It thenfollows that the thrust 
of even a nonuniform sail will act as though frat if k w  ;f>, d = w  ’:>, Sg and Spare all less than about 0.1. 

= jJ(ji - $)x? & involve products of the moment arms, so the dimensions 

must be constant (or nearly so) across the scale of the disturbances if the same rules are to apply. This will be 
essentially the case for small-scale distortions like wrinkles and creases, and it will also be true for small nonuniform 
patches, but it may not hold true for billow or for large lossy regions of sail, either of which will require that 
attention be paid to the details of the disturbance. 

While it might not guaranteepat sail performance for the moments when there are large-scale disturbances, the 
“10% rule” for RMS surface slopes and sut$ace property variations will produce the most well-defined and 
repeatable behavior, and it is therefore appropriate to regard it as afundamental design rule for solar sails. 

RMS slope is a useful mathematical concept, but one might ask whether it can actually be measured, and how, in 
fact, can one best measure sail distortion. Photogrammetry as done by LaRC‘s Optical Diagnostic System (ODs) 
(Ref. 3) can determine large scale distortions such as billow, but small-lateral-scale distortions such as wrinkles and 
creases can be missed completely -- although the degradation due to them could easily be just as important. 
However, the mean square slope itself is linked directly to the foreshortening of the sail material since, for example, 
the actual distance in the x-direction under a distorted sail with local surface slope wlX is given by 

x’ = jcos w’xdx = j[l - w’,212 + ...I dx = (1 - <w’,3/2 + ...) x 
where x is measured along the surface of the membrane. Thus, the RMS slope is related to the “apparent strain” by 

<w9:>=2Axlx and <w’:+w’:>=2AA/A . 
A 1% mean square slope corresponds to a 112% change in linear dimension, which, though small, should be easily 
measurable by a multi-megapixel digital camera with a good wide-angle lens (5 pixels out of 1000.) This might 
allow photogrammetry to make far more usehl in-plane measurements of surface distortions with much larger 
spatial frequencies than those of the targets themselves. Resolution in the direction of viewing would be degraded 
with a shallow viewing angle, but complementary orthogonal cameras could solve that problem if practical locations 
could be found for them. 

2 

4 

The results for the moments 

11. Sail Tension 
The total force component in the attachments normal to the nominal plane of the sails is just equal to the normal 

force on a sail, whether produced by gravity on the ground or by the very small solar flux in space, but the resultant 
forces in the attachments, as well as the stresses in the sails, depend upon the specific geometry. Regardless of how 
much the tension in the sail is increased, the normal force components remain unchanged, the angle between the sail 
attachment and the plane of the sail decreases - and the sail is flattened. 
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Mathcad was used to produce the linear least-squares fit 6 = 0.593 + 
15.522E for the Ls = 10m sail with a l g  normal loading of 6 gm/m2. The 

Both the AEC/SRS and L’Garde systems use triangular sail 
quadrants, but the latter is more easily analyzed because it is 
composed of parallel stripes, each supported by cords through their 
centers as shown in Fig. 5.  Defining the length of a stripe as L’, the 
width as h, and the load per unit area as 0, the load on a stripe is oL’h, 
and the opposing normal force at each end is then oL’h/2 if adjoining 
stripes are considered to be essentially independent. If the sail shape 
is approximated by a parabola of depth 6 (the limiting shape for a 
shallow catenary, sphere, etc.), then the tension acts at a shallow angle 
8 = 46L’ so that the tension F in the cord is given by 

F, lb. 1.5 3 4.5 
6, in. 5.81 4.01 

Fig. 5: L’Garde striped sail 

- 
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Characteristic Slope f 

Fig. 6: Effect of tension on sail distortion 

- 
given conditions, the result can be expressed as 

F 4F - (4)(15.22) L L 
a A  a L2 (393.7)(1.32) 6 6 
-=-- - = 0.1 195- 

where A = L2/4 is the area of a quadrant. The two results are 
plotted together in Fig. 6 using the quadrant length L as the 
characteristic length for the Able sail and the stripe length L’ 
for the other. The remarkable agreement is somewhat 
fortuitous and arises in part from the particular choice of 
length for the AEC sail, but there is no question that the 
functional dependence on the characteristic slope is the same. 
We know from the preceding section that the RMS slope 
distortion for the L’Garde sail is 2.31 6 L ’ ,  so F/aA must 
exceed about 2.3U0.8 = 2.9 for the RMS distortion to be 
restrained to the 10% level acceptable for good and 
predictable sail performance. It’s less certain how to relate the 
characteristic slope of the AECISRS sail to its RMS, but it is 
suggested 
in the 
absence 

of better 
information that F/oA = 3 be applied as a design rule to all 
sails. It is worthy of note that all of the AEC/SRS data lies 
above this value. ri 

The halyard force is shown in Fig. 7 for operation at lAU, 
and it is generally small because of the weak solar flux, but it 
can become important for very large sails, especially those 
operating near the sun andor for ones with high tension to 
minimize sail deflection. We are ultimately interested not so 
much in the tensile load itself but rather in the buckling load 
that it imposes on the boom and on the stresses that are 
imparted to the sail. The force F in the AEC/SRS halyards 

10 e 

E - 
2! I 

tends to act between 14 and 22.5 degrees to the boom, whereas 
the L’Garde stripe wires (except that at the edge) are at 45’ to IO 100 1000 10000 

0.1 

Sail Size 4, m the boom. The axial force for the former is then 92 - 97% of F, 
whereas it is 0.707F for the latter. Both corrections are Fig. 7: Halyard force 
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relatively minor, and a more important difference is that the AEC/SRS system applies the full load at the end, 
whereas L’Garde distributes it along the length of the boom. 

SRS has measured the yield stress of coated CP-I sail material and found it to be about 95OOpsi, so a 5p sail can 
support about 25 lb/m with a factor of safety of 3. Fig. 7 shows that the halyard force is typically no more than a 
few pounds, so sail stresses become an issue only in concentration zones like those near the attachment points where 
the stresses tend to vary radially with distance from them. SRS uses grommets and doublers to reinforce the corners 
of the sail, and their shear compliant border further helps to spread the load. The stress should not produce a 
limitation even with extremely large (or thinner) sails as long as 
careful attention is paid to the corners (or wherever force might be 

L’Garde’s present sail is fabricated in stripes from 2 . 5 ~  Mylar, a 
concentrated) and to bonding techniques. 

material that has been used in both space and industry for many years 
and whose general properties are well characterized as exemplified by 
the Dupont stress-strain curves of Fig. 8. There is appreciable f wm I S O !  

from that of CP-1. The stripes are in turn bonded along their lengths 
to Kevlar cords that are suspended periodically from the booms, so 
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temperature dependence, but the strength is not significantly different I 
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stress concentrations are minimized, and the mean stress in a stripe of 
width h and thickness t i s  

S = (F/oA) (J h/t , 
which is generally far less than 0.1 psi for operation with solar flux - 0 20 40 60 Bo I r n 1 2 0 1 4 0  
and is also far less than the values encountered with most tests and Elong.iion, % 

simulations. The same is true away from the corners and edges of the 
AEC/SRS sail. 

Figure 8: Mylar strength 

111. Dynamics 
AEC, L’Garde, and LaRC have performed varying degrees of dynamics modeling, but there has been little 

application to actual system design. Some of the most useful data was presented by Able in Ref. 4. Typical FEM 
results for mode frequency and shape are shown in Fig. 9 for the 10 m “workhorse” sail, and the frequency results 
are summarized on the next page: 

r.... I .  L.. 

I f  

Fig. 9: Predicted Able sail dynamics 
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The results with gravity obviously fail to follow the simple scaling and show that strong normal loading will 
somewhat increase the natural frequencies, but the lg gravitational load of the 5.96 gm/m2 material is 58400 N/km2 
or 6400 times the IAU solar flux, so it can safely be concluded that external loading will have only a negligible 
effect on the dynamics of a solar sail in space. On the other hand, the frequency results for no gravity certainly 
agree well with the simple scaling law, and it appears reasonable to suggest that the resonant frequencies of other 
sail quadrants in space with three-point halyard support will be given by 

f H z  = a F J * . 9 6  , CX= 1.00, 1.52, 1.68, 1.98,2.23,2.36, ... , 
L, 0 15 Pgln”1 

and that the corresponding modes will be those shown in the AEC slide. It should be noted that the “classical 
membrane theory” rigorously applies to membranes uniformly supported along their periphery, not discretely 
supported as,are solar sails, but the close agreement with sail data shows the value of extending such models after 
verifying that they may indeed be appropriate,. 

It’s also worth noting that the simple static model predicts that the sail tension should be proportional to the 
normal load for a given level of slope distortion, so that would produce a L-IR dependence for the sail natural 
frequencies - as long as both the slope and the loading remain the same. A word of caution here: the tension used 
for the AEC data corresponds to that required .for a reasonable billow at l g  (regardless of the “no gravity” 
description), and is over 6000 times larger than really needed in space, so it appears that the actual natural 
frequencies in space could be almost two orders of magnitude lower. 

Comparable information has not yet been found for the L’Garde striped sail, but they have reported 1.073 HZ 
for the lowest order mode of their 10M sail. No cord tension was specified, but it appears likely that their multi- 
point support shouldn’t significantly affect either the mode frequency or shape for at least the lower orders (for 
given loading and billow - again probably corresponding to ground operation.) 

A key point to be remembered for either type of sail is that internal stresses (even with Ig loading) are very 
small in the sails and in their attachment cords, so elastic strain will be virtually negligible compared to the apparent 
strain due to sail distortion. Thus, neither static nor dynamic loads will cause the sails to stretch, and their peak 
displacement will be determined by the details of their distortion distribution and their attachment to the booms. 
Global thermal expansion due to overall heating or cooling of the sail can also be important: heating can cause 
significant wrinkling andor billow, while cooling can produce excessively large thermal stress if there is not enough 
billow to accommodate it. Tension is essentially inversely proportional to the billow (or RMS slope distortion), and 
thermal contraction can therefore significantly limit the allowable tension. 
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N. System Scaling 
Although the functions of the booms are the same, i.e. to deploy themselves and the sails in a fully controlled 

manner from a collapsed state and to thereafter support the sails and associated controls during spacecraft operation, 
the designs from the two contractors are otherwise fundamentally quite different. 

The AEC CoilAble boom is a truss structure that deploys like an unwinding coiled spring under its own stored 
energy from a collapsed state with a length typically about 1% or less of the deployed length. It is composed of 
three continuous longerons (graphite in the ISP design), periodically spaced equilateral triangles of battens that bend 
and spring-load the longerons in the deployed state, and diagonal tension elements (Kevlar wires) connected at the 
batterdlongeron junctions. The design bears some semblance to a tensegrity structure, but it is not a tensegrity 
because of the internal moments experienced by the longerons under applied load. The boom is deployed first and 
the sail is raised thereafter using halyards from the tips. 

The principal failure mode of the structure is global buckling, for which the classical critical load for a column 
fixed at one end and free to rotate at the other is PCR = n2EI/4LBZ where the moment of inertia I = 3RZh2/2, R is the 
“radius” of the structure, h is the diameter (width) of a longeron, and LB = L/62 is the total boom length. Local 
buckling of the longerons between the battens can also be an issue, especially if all of the compressive load should 
be taken on one of the longerons; it corresponds to a column free to rotate at both ends, and is described by PCR = 
n2EI’/? where I’ = h4/12 is the moment of inertia of a single square longeron and l is  the unsupported length between 
battens. Local buckling can therefore be avoided by sizing the system such that I <  62 hLB/3R. Column theory is far 
less than an exact science, so a safety factor q of least 3 should be applied. Longeron compressive stress must also 
be no more than about 113 of the maximum allowable working stress 0,. The collapsed package will have a radius 
of about R, while the absolute minimum stored length Lo = hLd2nR allowing no room for fittings and the like, and 
AEC (Ref. 5) recommends L&B = (3/2nR)(h+0.02”) for a lanyard-deployed CoilAble. A key factor in the design is 
the maximum strain E = h/2R in the longerons in their coiled state, and AEC reports that E = 0.015 has served them 
well for their many previous booms that have used S-glass/epoxy, but that a lower value of 0.0072 is recommended 
for the newer high strength pultruded graphite booms with E = 27,300 kpsi. It should be cautioned, however, that 
the peak working stress o = EE = 200 kpsi in the stored longerons seems to be very high for most materials, 
especially for a pultruded composite for which high axial compressive loads might lead to delamination. Finally, it 
can be shown that the stored energy in the coiled boom is proportional to EE2h’LB so that the self-deployment 
force is proportional to EE’h’. 

Noting that the boom mass tends to be dominated by the three longerons, its mass cai  be represented by MB = 
3 p ~ h ’ L ~  where PB is the effective mass density, so general scaling laws for the Able boom are 

where we have set PCR = 3oL2/2 in accordance with the 
observations of Section I1 for two quadrants per boom. 
Using E = 0.00719 and pB = 2.89 g d c c  obtained from 
the 70.1 g d m  Able mast with 2.84 mm graphite 
longerons and a diameter of 395 mm, these are h/L. = 
0.00884 m d m  and M A 3  = 0.000478 g d m 3  for 
operation at normal incidence at 1 AU. The results are 
plotted in Fig. 10 in terms of the areal density. The 
masses for the booms and the sails add, and an optimum 
system corresponds to roughly equal contributions from 
the two because effort should generally be directed 
towards reducing the larger and/or easing requirements 
on the smaller. It should be immediately obvious from 
the plot that the linear scaling of the AEC boom, while 
advantageous from the standpoint of design experience, 
would yield a beam that would be far lighter than 
necessary and weaker than desirable for large sails - 
unless the mass of the sails themselves could be 

Buddingtimilad Longeron S i ,  m 
0.1 1 10 
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10 
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Sail Size L. m 

Figure 10: Able Scaling 
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significantly reduced. The mass of a 70 g/m boom would be less than that of a relatively advanced 3 g/m2 sail above 
a sail size of about 66 m, the same design could be used in space at 1 AU up to a sail size of about 321 m, and a 
geometrically scaled version could be used up to 1569 meters without the mass exceeding that of the sail! The 
present Able boom is significantly over-designed for many solar sail missions -- though not for operation or testing 
at Ig. 

Simple theory predicts that the resonant frequencies for lateral vibrational bending of a uniform beam are given 
by f. = Pn/L2 d(EVpLB) where Bo = 0.56 for a clamped-free configuration (Ref. 6.) This predicts a lowest natural 
frequency of 12 Hz for the 7.1 m CoilAble boom with a rigidity of 82,407 N-mZ and mass of 70.1 g/m, whereas 
AEC has measured 5.6 Hz with a 0.4 Ib tip mass and with tip loading via a negator spring. The agreement seems 
reasonable considering factors like the tip loading, and lends credence to the use of the simple scaling form with a 
“semi-empirical correction factor” 5.6/12 = 0.47. 

To complete the scaling for 1 AU solar loading, the lowest resonant frequencies of a 3 g/m2 sail and a buckling- 
limited Able boom are given by 

0.1 

0,Ol 

I \  
0 044 1.52 

fs= -HZ and f, = -HZ A Lln 

I which are plotted in Fig. 11. One can argue with the 
details of the assumed numerical values, but the point here 
is that buckling-limited scaling for space operation causes 
the boom frequency to be higher than that of the sail and its 
mass to be less for sail sizes up to about a kilometer. 
Damping may be very difficult to estimate for these 
systems, but complicated coupling between the boom and 
sail loads could possibly be avoided by widely separating 
the natural frequencies, and it does appear that the lowest 
sail and boom modes will in fact be reasonably well 
separated for all but the largest systems of interest for 
practical applications. Although it is unlikely that the 

frequencies of the sails themselves, the rigidity of the 
booms can be increased somewhat to increase their 
frequencies without significantly increasing the overall 

Louvcurt 
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hcwmr( 
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0.0001 I I modes can be separated further by reducing the natural 
‘woo t O  100 loo0 
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Fig. 11: Natural frequencies for Able system 
system mass. 

The L’Garde boom is a telescopic structure of cylindrical tubes that are deployed via internal gas pressure and 
are then thermally rigidized. Sailboat-like battens and stays provide additional strength with minimal added mass, 
and the “striped” sails are attached periodically to the booms. L’Garde and LaRC have performed detailed computer 
modeling of the system, and Greschik (Ref. 7) has provided a set of structural equations with some numerical results 
for a Solar Polar Imager @ 0.48 AU, but usefbl values for scaling are meager at best, so an independent simple 
model is presented here using available design information. 

Except for the outer edge with its “half-width’’ stripe and “catenary scallop”, the L’Garde sail quadrants load the 
stepped booms with a discrete set of linearly-distributed 45’ force components. Greschik gives base diameter DL = 
10 cm, tip diameter Do= 7.5 cm, wall thickness t = 0.0513 mm, and modulus E = 4,160,000 psi for the LB = 77.3 m 
L’Garde boom, so the equivalent tube rigidity 

1 3 

EZ=&I4 ][Do +(DL -Do)(] d(=nE/16(D0 + DL)(Di  + 0,“) 
0 

is 808 n-m2. This is far smaller than the value of 113 15 calculated by Greschik including the effects of the additional 
supporting structure of stringers, etc., but he does degrade it by 40% to 6789 N-m2 to account for less-than-rigid 
connections. Thus, the tapered boom apparently contributes only very little to the bendindbuckling stiffness of the 
system and apparently serves primarily as a compressiodtorsion member, so it will be assumed here that the rigidity 
scales geometrically with D3t and that the mass scales with DtLB. However, because of the stacked nature of the 
telescoping tubes, this boom is unlikely to scale simply by increasing the length. It is more likely that stripe widths 
might remain the same because of experience gained with fabrication of smaller systems, and we shall assume for 
added strength that the wall thickness will scale with the diameter. Greschik gives 50.14 g d m  for the specific mass 
of the LB = 77.3 m boom, and 3.03 g/m2 as the areal density for the Mylar film and Kevlar cord sail combination. 
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Assuming that buckling is in fact the proper failure criterion for the L’Garde boom, the deformation of a 
uniform boom with linearly distributed axial loading q(x) = qL x/LB can be modeled, and the results are well 
represented by ?j = 16EI IvL; =60L where 

subject to y = 0 and y” = 0 at x = 0 and y’ = 0 at x = LB. 

It follows then that the scaling is given by 

and 

77.3 77.3 10 

Fig. 12 shows that, with the prescribed scaling, a 357m sail 
can be used at 1AU with a L’Garde boom having Do = 7.5 
cm as it is now with Nm F/oA=9 (3 for distortion and 3 for 
safety factor) and that its mass would remain less than that of 
the sail even if the latter were reduced up to 5.7X, e.g. from 
2 . 5 ~  thickness to 0 . 4 4 ~ .  Doubling the tip diameter to 15 cm 
would allow a 1293m sail, and would still allow a 2.7X 
margin for sail mass reduction. 

The ultimate issue with larger systems will probably not 
be mass, however, but rather sail fabrication, packaging 
techniques, and dimensions. Sizes larger than about 100 
meters or so may extend beyond the envelopes of all but the 
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largest available launch vehicles with the present solar sail 10 l o2  10’ 10‘ 
“cruciform” configurations. A storage length of about 1% is Sail Size L,, meters 
typical for the AEC boom (actually 0.81% for e = 0.0072 and 
h = 2.84 mm), but the L’Garde scaling effectively maintains 
constant stored length while the diameter increases. If square sail designs are to continue to be used, it may prove 
necessary to store both the booms and the sails in a parallel configuration, folding both 90’ into a common plane for 
deployment and operation, perhaps using a concept akin to a sailboat’s “roller furling” for the sails. . 

Figure 12: L’Garde System Scaling 

V. Conclusions 
It has been shown here that the design and the scaling of solar sail systems proceeds in an orderly manner from 

requirements on allowable sail distortion, to the tension required to produce that level, to the strength and mass of 
the booms needed to support the sails. 

The fundamental parameter (or “figure of merit”) for describing sail distortion is the mean sum of the squares of 
the surface slopes. This quantity is strikingly similar to the R M S  phase distortion em> that is used to describe 
wavefronts and surfaces in optical imaging systems, and the simple reason is that both are based on integrals over 
the surface of quantities that must be small for the systems to behave consistently and properly. Much as one would 
always use precision fabrication techniques, adaptive optics, or the like to reduce optical system wavefront errors to 
an allowable amount for good overall performance, so also can surface billow and wrinkles of a solar sail be reduced 
to an allowable level by applying tension to the sail to effectively flatten it. Creases are likely to persist, but the 
affected fractional area will invariably be small. The analysis in fact shows that an RMS slope of about 10% will be 
sufficient to assure good performance, and that it can be obtained with a halyard (AEC) or cord (L’Garde) load 
about equal to three times the normal force on the supported area. Therefore, solar sail distortion-produced thrust 
and moment uncertainties can and should be prevented, not modeled and measured except to show that they can in 
fact be discounted. 

Present sail designs can easily support such loads essentially regardless of size, but the tensile loads are directly 
transferred to the booms which must be designed to prevent buckling, their principal potential mode of failure. It is 
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shown that the Able and L’Garde booms are both capable of remarkable strength and low mass for lengths of 
hundreds of meters in their present configurations, and that increases of transverse dimensions can extend their use 
to kilometer-size sails for use in the 1 AU or so space environment. These would be true space structures, however, 
and would not support the weight of a sail at even hundredths of one g. 

The conclusions of this report are an important beginning to answer the questions regarding scaling to very large 
solar sail systems, and they provide credibility to the approach being taken by the NASA In-Space Program. 
However, this scaling study has not addressed the major operational and logistical issues of gossamer-like sail 
system fabrication, handling, storage, and deployment - perhaps done in space itself -- that will require carefully 
planned and conducted demonstrations, not just modeling, with small-scale systems to prove that very large ones 
can indeed be trusted to perform properly in the final environment. 
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